Skip to main content

Telemetry (metrics and traces)

ToolHive includes built-in instrumentation using OpenTelemetry, which gives you comprehensive observability for your MCP server interactions. You can export traces and metrics to popular observability backends like Jaeger, Honeycomb, Datadog, and Grafana Cloud, or expose Prometheus metrics directly.

What you can monitor

ToolHive's telemetry captures detailed information about MCP interactions including traces, metrics, and performance data. For a comprehensive overview of the telemetry architecture, metrics collection, and monitoring capabilities, see the observability overview.

Enable telemetry

You can enable telemetry when deploying an MCP server by specifying Telemetry configuration in the MCPServer custom resource.

This example runs the Fetch MCP server and exports traces to a deployed instance of the OpenTelemetry Collector:

apiVersion: toolhive.stacklok.dev/v1alpha1
kind: MCPServer
metadata:
name: gofetch
namespace: toolhive-system
spec:
image: ghcr.io/stackloklabs/gofetch/server
transport: streamable-http
port: 8080
targetPort: 8080
...
...
telemetry:
openTelemetry:
enabled: true
endpoint: otel-collector-opentelemetry-collector.monitoring.svc.cluster.local:4318
serviceName: mcp-fetch-server
insecure: true
metrics:
enabled: true
tracing:
enabled: true
samplingRate: "0.05"
prometheus:
enabled: true

The spec.telemetry.openTelemetry.endpoint will be the OpenTelemetry collector that is deployed inside of your infrastructure, the spec.telemetry.openTelemetry.serviceName will be what you can use to identify your MCP server in your observability stack.

Export metrics to an OTLP endpoint

If you want to enable ToolHive to export metrics to your OTel collector, you can enable the spec.telemetry.openTelemetry.metrics.enabled flag.

Export traces to an OTLP endpoint

If you want to enable ToolHive to export tracing information, you can enable the spec.telemetry.openTelemetry.tracing.enabled flag.

You can also set the sampling rate of your traces by setting the spec.telemetry.openTelemetry.tracing.sampleRate option to a number between 0 and 1.0. By default this will be 0.05 which equates to 5% of all requests.

note

The spec.telemetry.openTelemetry.endpoint is provided as a hostname and optional port, without a scheme or path (e.g., use api.honeycomb.io or api.honeycomb.io:443, not https://api.honeycomb.io). ToolHive automatically uses HTTPS unless --otel-insecure is specified.

By default, the service name is set to toolhive-mcp-proxy, and the sampling rate is 0.05 (5%).

Recommendation

Set the spec.telemetry.openTelemetry.serviceName flag to a meaningful name for each MCP server. This helps you identify the server in your observability backend.

Enable Prometheus metrics

You can expose Prometheus-style metrics at /metrics on the main transport port for local scraping by enabling the spec.telemetry.prometheus.enabled flag.

To access the metrics, you can use curl or any Prometheus-compatible scraper. The metrics are available at http://<HOST>:<PORT>/metrics, where <HOST> is resolvable address of the ToolHive ProxyRunner fronting your MCP server pod and <PORT> is the port of which the ProxyRunner service is configured to expose for traffic.

Dual export

You can export to both an OTLP endpoint and expose Prometheus metrics simultaneously.

The MCPServer example at the top of this page has dual export enabled.

Observability backends

ToolHive can export telemetry data to many different observability backends. It supports exporting traces and metrics to any backend that implements the OTLP protocol. Some common examples are listed below, but specific configurations will vary based on your environment and requirements.

The OpenTelemetry Collector is a vendor-agnostic way to receive, process and export telemetry data. It supports many backend services, scalable deployment options, and advanced processing capabilities.

You can run the OpenTelemetry Collector inside of a Kubernetes cluster, follow the OpenTelemetry Collector documentation for more information.

To export data to a local OpenTelemetry Collector, set your OTLP endpoint to the OTLP http receiver port (default is 4318):

apiVersion: toolhive.stacklok.dev/v1alpha1
kind: MCPServer
metadata:
name: gofetch
namespace: toolhive-system
spec:
...
...
telemetry:
openTelemetry:
enabled: true
endpoint: otel-collector-opentelemetry-collector.monitoring.svc.cluster.local:4318
serviceName: mcp-fetch-server
insecure: true
metrics:
enabled: true

Prometheus

To collect metrics using Prometheus, run your MCP server with the spec.telemetry.prometheus.enabled flag enabled and add the following to your Prometheus configuration:

prometheus.yml
scrape_configs:
- job_name: 'toolhive-mcp-proxy'
static_configs:
- targets: ['<MCP_SERVER_PROXY_SVC_URL>:<MCP_SERVER_PORT>']
scrape_interval: 15s
metrics_path: /metrics

You can add multiple MCP servers to the targets list. Replace <MCP_SERVER_PROXY_SVC_URL> with the ProxyRunner SVC name and <MCP_SERVER_PORT> with the port number exposed by the SVC.

Jaeger

Jaeger is a popular open-source distributed tracing system. You can run it inside of a Kubernetes cluster in order to store tracing telemetry data exported by the ToolHive proxy.

You can export traces to Jaeger by setting the OTLP endpoint to an OpenTelemetry collector, and then configuring the collector to export tracing data to Jaeger.

apiVersion: toolhive.stacklok.dev/v1alpha1
kind: MCPServer
metadata:
name: gofetch
namespace: toolhive-system
spec:
...
...
telemetry:
openTelemetry:
enabled: true
endpoint: otel-collector-opentelemetry-collector.monitoring.svc.cluster.local:4318
serviceName: mcp-fetch-server
insecure: true
tracing:
enabled: true

Inside of your OpenTelemetry collector configuration.

config:
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318

exporters:
otlp/jaeger:
endpoint: http://jaeger-all-in-one-collector.monitoring:4317

service:
pipelines:
traces:
receivers: [otlp]
processors: [batch]
exporters: [otlp/jaeger]

Honeycomb

Coming soon.

You'll need your Honeycomb API key, which you can find in your Honeycomb account settings.

Datadog

Datadog has multiple options for collecting OpenTelemetry data:

  • The OpenTelemetry Collector is recommended for existing OpenTelemetry users or users wanting a vendor-neutral solution.

  • The Datadog Agent is recommended for existing Datadog users.

Grafana Cloud

Coming soon.

Performance considerations

Sampling rates

Adjust sampling rates based on your environment:

  • Development: spec.telemetry.openTelemetry.tracing.samplingRate: 1.0 (100% sampling)
  • Production: spec.telemetry.openTelemetry.tracing.samplingRate 0.01 (1% sampling for high-traffic systems)
  • Default: spec.telemetry.openTelemetry.tracing.samplingRate 0.05 (5% sampling)

Network overhead

Telemetry adds minimal overhead when properly configured:

  • Use appropriate sampling rates for your traffic volume
  • Monitor your observability backend costs and adjust sampling accordingly